Abstract

Abstract A West Sumatra squall line occurred on 10 January 2016, with a clear offshore propagation of convection. Satellite-derived products from Himawari-8 Advanced Himawari Imager and the Geostationary Cloud Algorithm Testbed Geocat are used to investigate the westward propagation of cloudiness from Sumatra to the Indian Ocean with a lifetime of 1.5 days. A convective mask based on deep convective cell detection and a cell-tracking algorithm are used to estimate the propagation speed of the cloud system. Two distinct mesoscale convective responses are identified: 1) a rapid development in South Sumatra is influenced by the convective environment over the Indian Ocean. The propagation speed is estimated to be ∼5 m s−1 within the first 200 km from the coast. This speed is consistent with density currents. In contrast, 2) the coupling to the inertia–gravity wave is only evident for the northwest of Sumatra with speeds of ∼12 m s−1. The analysis of brightness temperature from the 10.4-μm spectral band and cloud-top temperature showed that the lifetime of the squall line is approximately 30 h with a propagating distance of ∼1000 km. Retrieved cloud properties and tracking of the offshore propagation indicated that the cloud structure consisted of multiple types of cells, propagating as envelopes of convection, and revealed the influence of large-scale variability of the Indian Ocean. Filtered OLR anomalies, satellite-derived rainfall, moisture flux convergence, and background winds flow around Sumatra are used to explore the effects of Kelvin wave activity that likely influenced the lifetime of the squall line.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call