Abstract
One of the significant challenges to using information and ideas generated through ecosystem models and analyses for ecosystem-based fisheries management is the disconnect between modeling and management needs. Here we present a case study from the U.S. West Coast, the stakeholder review of NOAA’s annual ecosystem status report for the California Current Ecosystem established by the Pacific Fisheries Management Council’s Fisheries Ecosystem Plan, showcasing a process to identify management priorities that require information from ecosystem models and analyses. We then assess potential ecosystem models and analyses that could help address the identified policy concerns. We screened stakeholder comments and found 17 comments highlighting the need for ecosystem-level synthesis. Policy needs for ecosystem science included: (1) assessment of how the environment affects productivity of target species to improve forecasts of biomass and reference points required for setting harvest limits, (2) assessment of shifts in the spatial distribution of target stocks and protected species to anticipate changes in availability and the potential for interactions between target and protected species, (3) identification of trophic interactions to better assess tradeoffs in the management of forage species between the diet needs of dependent predators, the resilience of fishing communities, and maintenance of the forage species themselves, and (4) synthesis of how the environment affects efficiency and profitability in fishing communities, either directly via extreme events (e.g., storms) or indirectly via climate-driven changes in target species availability. We conclude by exemplifying an existing management process established on the U.S. West Coast that could be used to enable the structured, iterative, and interactive communication between managers, stakeholders, and modelers that is key to refining existing ecosystem models and analyses for management use.
Highlights
Fish stocks do not live isolated from, but exist as part of an ecosystem, and their dynamics are intrinsically related to those of their habitat, prey, and predators, from environmental conditions to humans
This topic was associated with the highest number of comments (Table 1), perhaps because productivity indicators can inform the setting of species-specific harvest levels, one of the main management measures used by PMFC
Informed short-term recruitment forecasts are important for semelparous species like salmon, as there is no direct carryover of spawning biomass across years, or for forage species whose fishable biomass consists in large part of young age classes (Tommasi et al, 2017c)
Summary
Fish stocks do not live isolated from, but exist as part of an ecosystem, and their dynamics are intrinsically related to those of their habitat, prey, and predators, from environmental conditions to humans. In the United States, scientists have been exploring and coordinating the use of ecosystem models to address ocean ecosystem science and management questions for over a decade (Townsend et al, 2008, 2014, 2017; Link et al, 2010). Ecosystem modelers are not necessarily asking the same questions of their models as those asked by legal mandates or by managers implementing those mandates. This disconnect between scientific interest and management needs may contribute to the perceived slow pace in the uptake and implementation of ecosystem-based management (Hilborn, 2011; Cowan et al, 2012; Marshall et al, 2018).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.