Abstract
BackgroundLynch syndrome (LS), which is known as a hereditary cancer syndrome, is distinguished by microsatellite instability, represented by the altered number of repetitive sequences in the coding and/or non-coding region. Immunohistochemical staining (IHC) of DNA mismatch repair (MMR) proteins (e.g., MLH1, MSH2, MSH6, and PMS2) has been recognized as an useful technique for screening of LS. Previous study has shown that the assessment of IHC, however, requires specific caution due to variable staining patterns even without germline mutations in MMR genes.Case presentationA 48-year-old man, who had been treated for anaplastic astrocytoma, was referred to our department for the precise examination of progressing anemia. Whole-body examination revealed two advanced carcinomas in descending colon and stomach. A hypo-vascular mass lesion was detected in liver as well. Pathological diagnosis (on surgical specimens) was poorly differentiated adenocarcinoma in descending colon, moderately differentiated tubular adenocarcinoma in stomach, and liver metastasis, which is possibly from colon. It was suspected that this case would be Turcot’s syndrome-type-1 due to its specific family history having two cases of colon cancer within the second relatives. Pathogenic frameshift mutations in codon 618 of MLH1 gene was identified. Immunohistochemical analyses (IHC) demonstrated complete loss of MLH1 immuno-expression as well as of PMS2 except for those in brain tumor. Although frameshift mutation was not found in MSH6 gene, histological expression of MSH6 was patchy in primary colon carcinoma and was completely lost in the metastatic site in liver. MSH6 expression in gastric carcinoma, a coincidental cancer in this case, was intact. An abnormal (C)8 region was identified by the cloned PCR of colon and liver tumors but not from gastric cancer. Frameshift mutation in a (C)8 tract in exon 5 of the MSH6 gene was also detected in liver metastasis.ConclusionThis case supports a plausible mechanism, proposed by a previous literature, for the reduced expression of MSH6 in a somatic mutation manner, which might preferentially happen in colon cancer rather than in stomach carcinoma in MLH1/PMS2-deficient type of Turcot’s syndrome type 1.
Highlights
Lynch syndrome (LS), which is known as a hereditary cancer syndrome, is distinguished by microsatellite instability, represented by the altered number of repetitive sequences in the coding and/or non-coding region
Frameshift mutation was not found in MSH6 gene, histological expression of MSH6 was patchy in primary colon carcinoma and was completely lost in the metastatic site in liver
This case supports a plausible mechanism, proposed by a previous literature, for the reduced expression of MSH6 in a somatic mutation manner, which might preferentially happen in colon cancer rather than in stomach carcinoma in MLH1/PMS2-deficient type of Turcot’s syndrome type 1
Summary
This case supports a plausible mechanism, proposed by a previous literature, for the reduced expression of MSH6 in a somatic mutation manner, which might preferentially happen in colon cancer rather than in stomach carcinoma in MLH1/PMS2-deficient type of Turcot’s syndrome type 1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.