Abstract

A set of oxidized and unoxidized sediment intervals from the f-turbidite identified in two piston cores from the Madeira Abyssal Plain (MAP) was analyzed for calcium carbonate, total organic carbon (TOC), total nitrogen (TN), stable carbon composition of TOC ( δ 13C toc ), total hydrolyzable amino acids (THAA), total neutral sugars (TSUG), lignin phenols (LIG), two different lipid biomarkers of marine phytoplankton origin and vascular plantwax n-alkanes and n-acids. Comparison shows changes for all properties depicting the effect of post-depositional, aerobic oxidation. The oxidation process re-mineralized approximately 80% of the TOC and approximately 60% of the TN in the original deposit and left the residual organic matter depleted in 13C by 1.7–2.9‰ THAA and TSUG account for 10% or less of the TOC in all samples leaving approximately 90% of the TOC chemically unidentified. THAA, TSUG, LIG, marine phytoplankton biomarkers and plantwax n-acids were lost from the oxidized deposit to an extent as great as that for TOC. Two non-protein amino acids (β-alanine and γ-aminobutyric acid) and plant wax n-alkanes displayed much less degradation (9–37%) and concentrated 3.3–4.8 times relative to TOC by the oxidation process. These observations show that both marine and terrestrial components contribute to the re-mineralized TOC fraction. A binary mixing approach was used to model quantitatively the change in δ 13C toc and plantwax n-alkane concentration. Results suggest that terrestrial organic carbon contributes approximately 15% to the TOC content of the original turbidite, its abundance increases approximately 2–4 times as a consequence of the oxidation process and approximately 40 and 90% of the terrestrial and marine component of TOC in the original turbidite, respectively, was destroyed by the oxidation process. Although selective preservation of terrestrial relative to marine organic carbon is a well-documented phenomenon in sedimentary processes, this study represents the first attempt to assess the sensitivity of terrestrial organic matter to oxidative degradation in a sedimentary environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.