Abstract
We consider a specific scheme of multivariate Birkhoff polynomial interpolation. Our samples are derivatives of various orders kj at fixed points vj along fixed straight lines through vj in directions uj, under the following assumption: the total number of sampled derivatives of order k,k=0,1,… is equal to the dimension of the space homogeneous polynomials of degree k. We show that this scheme is regular for general directions. Specifically this scheme is regular independent of the position of the interpolation nodes. In the planar case, we show that this scheme is regular for distinct directions.Next we prove a “Birkhoff-Remez” inequality for our sampling scheme extended to larger sampling sets. It bounds the norm of the interpolation polynomial through the norm of the samples, in terms of the geometry of the sampling set.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.