Abstract

<h3>Abstract</h3> 3D <i>in vitro</i> cancer models are important therapeutic and biological discovery tools, yet formation of multicellular spheroids in a throughput and highly controlled manner to achieve robust and statistically relevant data, remains challenging. Here, we developed an enabling technology consisting of a bespoke drop-on-demand 3D bioprinter capable of high-throughput printing of 96-well plates of spheroids. 3D-multicellular spheroids are embedded inside a tissue-like matrix with precise control over size and cell number. Application of 3D bioprinting for high-throughput drug screening was demonstrated with doxorubicin. Measurements showed that IC<sub>50</sub> values were sensitive to spheroid size, embedding and how spheroids conform to the embedding, revealing parameters shaping biological responses in these models. Our study demonstrates the potential of 3D bioprinting as a robust high-throughput platform to screen biological and therapeutic parameters. <h3>Significance Statement</h3> <i>In vitro</i> 3D cell cultures serve as more realistic models, compared to 2D cell culture, for understanding diverse biology and for drug discovery. Preparing 3D cell cultures with defined parameters is challenging, with significant failure rates when embedding 3D multicellular spheroids into extracellular mimics. Here, we report a new 3D bioprinter we developed in conjunction with bioinks to allow 3D-multicellular spheroids to be produced in a high-throughput manner. High-throughput production of embedded multicellular spheroids allowed entire drug-dose responses to be performed in 96-well plate format with statistically relevant numbers of data points. We have deconvoluted important parameters in drug responses including the impact of spheroid size and embedding in an extracellular matrix mimic on IC<sub>50</sub> values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call