Abstract
Recently, Peterson et al. provided evidence of the benefits of using probabilistic soft labels generated from crowd annotations for training a computer vision model, showing that using such labels maximizes performance of the models over unseen data. In this paper, we generalize these results by showing that training with soft labels is an effective method for using crowd annotations in several other ai tasks besides the one studied by Peterson et al., and also when their performance is compared with that of state-of-the-art methods for learning from crowdsourced data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Human Computation and Crowdsourcing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.