Abstract
Abnormal glycosylation of proteins is known to be either resultant or causative of a variety of diseases. This makes glycoproteins appealing targets as potential biomarkers and focal points of molecular studies on the development and progression of human ailment. To date, a majority of efforts in disease glycoproteomics have tended to center on either determining the concentration of a given glycoprotein, or on profiling the total population of glycans released from a mixture of glycoproteins. While these approaches have demonstrated some diagnostic potential, they are inherently insensitive to the fine molecular detail which distinguishes unique and possibly disease relevant glycoforms of specific proteins. As a consequence, such analyses can be of limited sensitivity, specificity, and accuracy because they do not comprehensively consider the glycosylation status of any particular glycoprotein, or of any particular glycosylation site. Therefore, significant opportunities exist to improve glycoproteomic inquiry into disease by engaging in these studies at the level of individual glycoproteins and their exact loci of glycosylation. In this concise review, the rationale for glycoprotein and glycosylation site specificity is developed in the context of human disease glycoproteomics with an emphasis on N-glycosylation. Recent examples highlighting disease-related perturbations in glycosylation will be presented, including those involving alterations in the overall glycosylation of a specific protein, alterations in the occupancy of a given glycosylation site, and alterations in the compositional heterogeneity of glycans occurring at a given glycosylation site. Each will be discussed with particular emphasis on how protein-specific and site-specific approaches can contribute to improved discrimination between glycoproteomes and glycoproteins associated with healthy and unhealthy states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.