Abstract

Given the multicore microprocessor revolution, we argue that the architecture research community needs a dramatic increase in simulation capacity. We believe FPGA Architecture Model Execution (FAME) simulators can increase the number of useful architecture research experiments per day by two orders of magnitude over Software Architecture Model Execution (SAME) simulators. To clear up misconceptions about FPGA-based simulation methodologies, we propose a FAME taxonomy to distinguish the costperformance of variations on these ideas. We demonstrate our simulation speedup claim with a case study wherein we employ a prototype FAME simulator, RAMP Gold, to research the interaction between hardware partitioning mechanisms and operating system scheduling policy. The study demonstrates FAME's capabilities: we run a modern parallel benchmark suite on a research operating system, simulate 64-core target architectures with multi-level memory hierarchy timing models, and add experimental hardware mechanisms to the target machine. The simulation speedup achieved by our adoption of FAME-250×-enables experiments with more realistic time scales and data set sizes thanare possible with SAME.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.