Abstract

Backtracking (i.e. reverse execution) helps the user of a debugger to naturally think backwards along the execution path of a program, and thinking backwards makes it easy to locate the origin of a bug. So far backtracking has been implemented mostly by state saving or by checkpointing. These implementations, however, inherently do not scale. As has often been said, the ultimate solution for backtracking is to use reverse code: executing the reverse code restores the previous states of a program. In our earlier work, we presented a method to generate reverse code on the fly while running a debugger. This article presents a case study of dynamic reverse-code generation. We compare the memory usage of various backtracking methods in a simple but nontrivial example, a bounded-buffer program. In the case of non-deterministic programs such as this bounded-buffer program, our dynamic reverse-code generation can outperform the existing backtracking methods in terms of memory efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.