Abstract

Recent studies have shown that ultraviolet (UV)-induced chemiexcitation of melanin fragments leads to DNA damage; and chemiexcitation of melanin fragments requires reactive oxygen species (ROS), as ROS excite an electron in the melanin fragments. In addition, ROS also cause DNA damages on their own. We hypothesized that ROS producing and metabolizing enzymes were major contributors in UV-driven melanomas. In this case-control study of 349 participants, we genotyped 23 prioritized single nucleotide polymorphisms (SNPs) in nicotinamide adenine dinucleotide phosphate (NADPH) oxidases 1 and 4 (NOX1 and NOX4, respectively), CYBA, RAC1, superoxide dismutases (SOD1, SOD2, and SOD3) and catalase (CAT), and analyzed their associated melanoma risk. Five SNPs, namely rs1049255 (CYBA), rs4673 (CYBA), rs10951982 (RAC1), rs8031 (SOD2), and rs2536512 (SOD3), exhibited significant genotypic frequency differences between melanoma cases and healthy controls. In simple logistic regression, RAC1 rs10951982 (odds ratio (OR) 8.98, 95% confidence interval (CI): 5.08 to 16.44; p < 0.001) reached universal significance (p = 0.002) and the minor alleles were associated with increased risk of melanoma. In contrast, minor alleles in SOD2 rs8031 (OR 0.16, 95% CI: 0.06 to 0.39; p < 0.001) and SOD3 rs2536512 (OR 0.08, 95% CI: 0.01 to 0.31; p = 0.001) were associated with reduced risk of melanoma. In multivariate logistic regression, RAC1 rs10951982 (OR 6.15, 95% CI: 2.98 to 13.41; p < 0.001) remained significantly associated with increased risk of melanoma. Our results highlighted the importance of RAC1, SOD2, and SOD3 variants in the risk of melanoma.

Highlights

  • Ultraviolet (UV) rays are capable of inducing melanin production in melanocytes and promoting melanin transportation to the outermost layer of the skin—the keratinocytes

  • Cases were retrieved from the international Genes, Environment, and Melanoma (GEM) study, which may not be strictly generalizable to a broader melanoma patient population

  • After removal of single nucleotide polymorphisms (SNPs) markers with high error rates during the assessment of genotyping quality, 21 SNP candidates remained to be eligible for the genetic association analysis

Read more

Summary

Introduction

Ultraviolet (UV) rays are capable of inducing melanin production in melanocytes and promoting melanin transportation to the outermost layer of the skin—the keratinocytes. These melanins form a cap over the nucleus of both cell types and protect DNA from direct energy destruction [1,2]. UV rays are able to initiate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) dominated reactive oxygen species (ROS) production and chemiexcitation of melanin. 2018, 19, 242 oxidase (NOX) dominated reactive oxygen species (ROS) production and chemiexcitation of melanin fragments that affect DNA stability in melanocytes [3–5].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.