Abstract
Automatic segmentation of brainstem gliomas and prediction of genotype (H3 K27M) mutation status based on magnetic resonance (MR) images are crucial but challenging tasks for computer-aided diagnosis in neurosurgery. In this paper, we present a novel cascaded deep convolutional neural network (CNN) to address these two challenging tasks simultaneously. Our novel segmentation task contains two feature-fusion modules: the Gaussian-pyramid multiscale input features-fusion technique and the brainstem-region feature enhancement. The aim is to resolve very difficult problems in brainstem glioma segmentation. Our prediction model combines CNN features and support-vector-machine classifier to automatically predict genotypes without region-of-interest labeled-MR images and is learned jointly with the segmentation task. First, Gaussian-pyramid multiscale input feature fusion is added to our glioma-segmentation task to solve the problems of size variety and weak brainstem-gliomas boundaries. Second, the two feature-fusion modules provide both local and global contexts to retain higher frequency details for sharper tumor boundaries, handling the problem of the large variation of tumor shape, and volume resolution. Experiments demonstrate that our cascaded CNN method achieves not only a good tumor segmentation result with a high Dice similarity coefficient of 77.03%, but also a competitive genotype prediction result with an average accuracy of 94.85% upon fivefold cross-validation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.