Abstract
We consider a device-to-device (D2D) underlaid cellular network, where each cellular channel can be shared by several D2D pairs and only one channel can be allocated to each D2D pair. We try to maximize the sum rate of D2D pairs while limiting the interference to cellular links. Due to the lack of global information in large scale networks, resource allocation is hard to be implemented in a centralized way. Therefore, we design a novel distributed resource allocation scheme which is based on local information and requires little coordination and communication between D2D pairs. Specifically, we decompose the original problem into two cascaded subproblems, namely channel allocation and power control. The cascaded structure of our scheme enables us to cope with them respectively. Then a two-stage algorithm is proposed. In the first stage, we model the channel allocation problem as a many-to-one matching with externalities and try to find a strongly swap-stable matching. In the second stage, we adopt a pricing mechanism and develop an iterative two-step algorithm to solve the power control problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.