Abstract
Commitment to and completion of sexual development are essential for malaria parasites (protists of the genus Plasmodium) to be transmitted through mosquitoes1. The molecular mechanism(s) responsible for commitment have been hitherto unknown. Here we show that PBAP2-G, a conserved member of the ApiAP2 family of transcription factors, is essential for the commitment of asexually replicating forms to sexual development in P. berghei, a malaria parasite of rodents. PBAP2-G was identified from mutations in its encoding gene, PBANKA_143750, which account for the loss of sexual development frequently observed in parasites transmitted artificially by blood passage. Systematic gene deletion of conserved ApiAP2 genes in Plasmodium confirmed the role of PBAP2-G and revealed a second ApiAP2 member (PBANKA_103430, termed PBAP2-G2) that significantly modulates but does not abolish gametocytogenesis indicating that a cascade of ApiAP2 proteins are involved in commitment to the production and maturation of gametocytes. The data suggest a mechanism of commitment to gametocytogenesis in Plasmodium consistent with a positive feedback loop involving PBAP2G which might be exploited to prevent the transmission of this pernicious parasite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.