Abstract

Deep neural networks have been widely used in detection tasks based on optical remote sensing images. However, in recent studies, deep neural networks have been shown to be vulnerable to adversarial examples. Adversarial examples are threatening in both the digital and physical domains. Specifically, they make it possible for adversarial examples to attack aerial remote sensing detection. To defend against adversarial attacks on aerial remote sensing detection, we propose a cascaded adversarial defense framework, which locates the adversarial patch according to its high frequency and saliency information in the gradient domain and removes it directly. The original image semantic and texture information is then restored by the image inpainting method. When combined with the random erasing algorithm, the robustness of detection is further improved. Our method is the first attempt to defend against adversarial examples in remote sensing detection. The experimental results show that our method is very effective in defending against real-world adversarial attacks. In particular, when using the YOLOv3 and YOLOv4 algorithms for robust detection of single-class targets, the AP60 of YOLOv3 and YOLOv4 only drop by 2.11% and 2.17%, respectively, under the adversarial example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.