Abstract

This paper presents a Cartesian method for the simultaneous fitting of the bathymetry and shorelines in a three-dimensional, hydrodynamic model for free-surface flows. The model, named LESS3D (Lake & Estuarine Simulation System in Three Dimensions), solves flux-based finite difference equations in the Cartesian-coordinate system ( x, y, z). It uses a bilinear bottom to fit the bottom topography and keeps track the dynamic position of the shoreline. The resulting computational cells are hybrid: interior cells are regular Cartesian grid cells with six rectangular faces, and boundary/bottom cells (at least one face is the water–solid interface) are unstructured cells whose faces are generally not rectangular. With the bilinear interpolation, the shape of a boundary/bottom cell can be determined at each time step. This allows the Cartesian coordinate model to accurately track the dynamic position of the shorelines. The method was tested with a laboratory experiment of a Tsunami runup case on a circular island. It was also tested for an estuary in Florida, USA. Both model applications demonstrated that the Cartesian method is quite robust. Because the present method does not require any coordinate transformation, it can be an attractive alternative to curvilinear grid model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call