Abstract
The aim of the present numerical study is to show that the recently developed Alternating Direction Reconstruction Immersed Boundary Method (ADR-IBM) (Giannenas and Laizet in Appl Math Model 99:606–627, 2021) can be used for Fluid–Structure Interaction (FSI) problems and can be combined with an Actuator Line Model (ALM) and a Computer-Aided Design (CAD) interface for high-fidelity simulations of fluid flow problems with rotors and geometrically complex immersed objects. The method relies on 1D cubic spline interpolations to reconstruct an artificial flow field inside the immersed object while imposing the appropriate boundary conditions on the boundaries of the object. The new capabilities of the method are demonstrated with the following flow configurations: a turbulent channel flow with the wall modelled as an immersed boundary, Vortex Induced Vibrations (VIVs) of one-degree-of-freedom (2D) and two-degree-of-freedom (3D) cylinders, a helicopter rotor and a multi-rotor unmanned aerial vehicle in hover and forward motion. These simulations are performed with the high-order fluid flow solver Incompact3d which is based on a 2D domain decomposition in order to exploit modern CPU-based supercomputers. It is shown that the ADR-IBM can be used for the study of FSI problems and for high-fidelity simulations of incompressible turbulent flows around moving complex objects with rotors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.