Abstract

Drug resistance is a significant challenge in cancer chemotherapy and is a primary factor contributing to poor recovery for cancer patients. Although drug-loaded nanoparticles have shown promise in overcoming chemotherapy resistance, they often carry a combination of drugs and require advanced design and manufacturing processes. Furthermore, they seldom approach chemotherapy-resistant tumors from an immunotherapy perspective. In this study, we developed a therapeutic nanovaccine composed solely of chemotherapy-induced resistant tumor antigens (CIRTAs) and the immune adjuvant Toll-like receptor (TLR) 7/8 agonist R848 (CIRTAs@R848). This nanovaccine does not require additional carriers and has a simple production process. It efficiently delivers antigens and immune stimulants to dendritic cells (DCs) simultaneously, promoting DCs maturation. CIRTAs@R848 demonstrated significant tumor suppression, particularly when used in combination with the immune checkpoint blockade (ICB) anti-PD-1 (αPD-1). The combined therapy increased the infiltration of T cells into the tumor while decreasing the proportion of regulatory T cells (Tregs) and modulating the tumor microenvironment, resulting in long-term immune memory. Overall, this study introduces an innovative strategy for treating chemotherapy-resistant tumors from a novel perspective, with potential applications in personalized immunotherapy and precision medicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.