Abstract

This paper presents a carrier-based approach to develop a compact model for long-channel undoped symmetric double-gate MOSFETs. The formulation starts from a solution of the Poisson's equation that is coupled to the Pao-Sah current formulation to obtain an analytic drain-current model in terms of the carrier concentration. The model provides an analytical expression to describe the dependence of the surface potential, silicon-film centric potential, inversion charge, and the current on the silicon-body thickness and the gate-oxide thickness. The model calculation is verified by comparing results to the 2D numerical simulations, and good agreement is observed

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.