Abstract
Asymmetric driving behavior is a critical characteristic of human driving behaviors and has a significant impact on traffic flow. In consideration of the asymmetric driving behavior, this paper proposes a long short-term memory (LSTM) neural networks (NN) based car-following (CF) model to capture realistic traffic flow characteristics by incorporating the driving memory. The NGSIM data are used to calibrate and validate the proposed CF model. Meanwhile, three characteristics closely related to the asymmetric driving behavior are investigated: hysteresis, discrete driving, and intensity difference. The simulation results show the good performance of the proposed CF model on reproducing realistic traffic flow features. Moreover, to further demonstrate the superiority of the proposed CF model, two other CF models including recurrent neural network based CF model and asymmetric full velocity difference model, are compared with LSTM-NN model. The results reveal that LSTM-NN model can capture the asymmetric driving behavior well and outperforms other models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Part C: Emerging Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.