Abstract
In this study, a computational approach based on the shifted second-kind Chebyshev cardinal functions (CCFs) is proposed for obtaining an approximate solution of coupled variable-order time-fractional sine-Gordon equations where the variable-order fractional operators are defined in the Caputo sense. The main ideas of this approach are to expand the unknown functions in tems of the shifted second-kind CCFs and apply the collocation method such that it reduces the problem into a system of algebraic equations. To algorithmize the method, the operational matrix of variable-order fractional derivative for the shifted second-kind CCFs is derived. Meanwhile, an effective technique for simplification of nonlinear terms is offered which exploits the cardinal property of the shifted second-kind CCFs. Several numerical examples are examined to verify the practical efficiency of the proposed method. The method is privileged with the exponential rate of convergence and provides continuous solutions with respect to time and space. Moreover, it can be adapted for other types of variable-order fractional problems straightforwardly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.