Abstract

Since HIV-1 replication is modulated at multiple stages by host cell factors, identification and characterization of those host cell factors are expected to contribute to the development of novel anti-HIV therapeutics. Previous studies showed that a C-terminally truncated cytosolic form of cleavage and polyadenylation-specific factor 6 (CPSF6-358) inhibits HIV-1 infection through interference with HIV-1 trafficking to the nucleus. Here we identified and characterized a different configuration of C-terminally truncated human CPSF6 (hCPSF6-375) through cDNA expression cloning coupled with ganciclovir-mediated lethal selection. Notably, hCPSF6-375, but not mouse CPSF6-358 (mCPSF6-358) as previously reported, remarkably interfered with viral cDNA synthesis after HIV-1 infection. Moreover, we found that hCPSF6-375 aberrantly accelerated the disassembly of the viral capsid in target cells, while CPSF6-358 did not. Sequence comparison of CPSF6-375 and CPSF6-358 cDNAs showed a lack of exon 6 and additional coding sequence for 54 amino acid residues in the C terminus of hCPSF6-375. Mutational analyses revealed that the residues encoded by exon 6, but not the C-terminal 54 residues in hCPSF6-375, is responsible for impaired viral cDNA synthesis by hCPSF6-375. This is the first report demonstrating a novel mode of HIV-1 inhibition by truncated forms of CPSF6 that involves rapid capsid disassembly and inhibition of viral cDNA synthesis. These findings could facilitate an increased understanding of viral cDNA synthesis in light of the viral capsid disassembly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.