Abstract

Due to flexible structure tunability and abundant structure diversity, redox-active polymers are promising cathode materials for developing affordable and sustainable Na-ion batteries (NIBs). However, polymer cathodes still suffer from low capacity, poor cycle life, and sluggish reaction kinetics. Herein, we designed and synthesized a polymer cathode material bearing carbonyl and azo groups as well as extended conjugation structures in the repeating units. The polymer cathode exhibited exceptional electrochemical performance in NIBs in terms of high capacity, long lifetime, and fast kinetics. When coupled with a low-concentration electrolyte, it shows superior performance at low temperatures down to -50 °C, demonstrating great promise for low-temperature battery applications. Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) were employed to study the reaction mechanism, interphase structure, and morphological evolution, confirming reversible redox reactions between azo/carbonyl groups in the polymer and Na+/electrons, a NaF-rich interphase, and high structure stability upon cycling. This work provides an effective approach to developing high-performance polymer cathodes for affordable, sustainable, and low-temperature NIBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call