Abstract
Developing robust cell recognition strategies is important in biochemical research, but the lack of well-defined target molecules creates a bottleneck in some applications. In this paper, a carbon nanotube sensor array was constructed for the label-free discrimination of live and dead mammalian cells. Three types of carbon nanotube field-effect transistors were fabricated, and different features were extracted from the transfer characteristic curves for model training with linear discriminant analysis (LDA) and support-vector machines (SVM). Live and dead cells were accurately classified in more than 90% of samples in each sensor group using LDA as the algorithm. The recursive feature elimination with cross-validation (RFECV) method was applied to handle the overfitting and optimize the model, and cells could be successfully classified with as few as four features and a higher validation accuracy (up to 97.9%) after model optimization. The RFECV method also revealed the crucial features in the classification, indicating the participation of different sensing mechanisms in the classification. Finally, the optimized LDA model was applied for the prediction of unknown samples with an accuracy of 87.5-93.8%, indicating that live and dead cell samples could be well-recognized with the constructed model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.