Abstract

A carbon nanotube (CNT)-reinforced noble tin anode structure in which CNTs fasten the tin layer to a copper underlayer has been fabricated using plating techniques so as to improve the cyclability of lithium-ion batteries. In this process, a Cu/CNTs composite layer, on one side of which CNTs protrude from the surface, is formed using a reverse current electrodeposition technique. The surface of this composite layer is subsequently coated with a tin layer by a substitution-type electroless plating technique, resulting in the CNT-reinforced noble tin anode structure. The electrochemical characteristics of this noble tin anode structure have been evaluated and compared to those of a tin anode structure without CNTs. The noble tin anode structure shows significantly improved cyclability compared with the tin anode structure and maintains a higher reversible capacity of 591 mAh g−1, a value that is 1.6 times the theoretical capacity of graphite, even after 30 cycles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.