Abstract

A novel, polymer-based carbon nanotube (CNT) composite with high electromagnetic (EM) wave shielding effectiveness (SE) and high mechanical properties was developed. Two types of CNTs with different aspect ratios and morphologies are compared in this study. Amorphous carbon and graphite powder are used as reference materials. The liquid crystal polymer (LCP) and melamine formaldehyde (MF) are used as polymer matrices to study the orientation effect of CNTs in a polymer matrix. The influences of orientation, aspect ratio, mass fraction, and morphology of CNTs upon the shielding effectiveness (SE) of CNT/polymer composites are investigated. The experimental results show that the higher the orientation, the aspect ratio, and the weight percentage of nanomaterials are in the composite, the higher the polymer composites’ SE. The nanomaterials’ morphology, especially CNTs, also affects the SE value of the polymer composite. The highest SE for the CNT/LCP composite obtained is >62 dB. The theoretically calculated SE data are consistent with experimentally obtained data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call