Abstract
A carbon nanofiber-based label free electrochemical immunosensor for sensitive detection of recombinant bovine somatotropin (rbST) was developed. In this immunosensor design, a mild site-directed antibody immobilization via interaction of boronic acid and oligosaccharide moiety found on Fc region of an antibody was performed to preserve the biological activity of antibody and improve the sensor's sensitivity. Electrochemical characterization of the immunosensor fabrication was carried out by differential pulse voltammetry (DPV) in Fe(CN)6(3-)/Fe(CN)6(4-) probe. A comparison study between different transducer platforms showed carbon nanofiber gave higher current signal response than single-walled carbon nanotube. In this work, calibration curve was obtained from the decrease of DPV peak current of Fe(CN)6(3-)/Fe(CN)6(4-) after immunocomplexed was formed. A linear relationship between DPV current change signal response and rbST concentrations from 1 pg/mL to 10 ng/mL (correlation coefficient of 0.9721) was achieved with detection limit of 1 pg/mL. Our developed immunosensor demonstrated high selectivity in cross-reactivity studies and a good percentage recovery in spiked bovine serum sample.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.