Biotechnology and Bioengineering | VOL. 114
Read

A carbon dioxide stripping model for mammalian cell culture in manufacturing scale bioreactors

Publication Date Feb 15, 2017

Abstract

Control of carbon dioxide within the optimum range is important in mammalian bioprocesses at the manufacturing scale in order to ensure robust cell growth, high protein yields, and consistent quality attributes. The majority of bioprocess development work is done in laboratory bioreactors, in which carbon dioxide levels are more easily controlled. Some challenges in carbon dioxide control can present themselves when cell culture processes are scaled up, because carbon dioxide accumulation is a common feature due to longer gas-residence time of mammalian cell culture in large scale bioreactors. A carbon dioxide stripping model can be used to better understand and optimize parameters that are critical to cell culture processes at the manufacturing scale. The prevailing carbon dioxide stripping models in literature depend on mass transfer coefficients and were applicable to cell culture processes with low cell density or at stationary/cell death phase. However, it was reported that gas bubbles are saturated with carbon dioxide before leaving the culture, which makes carbon dioxide stripping no longer depend on a mass transfer coefficient in the new generation cell culture processes characterized by longer exponential growth phase, higher peak viable cell densities, and higher specific production rate. Here, we present a new carbon dioxide stripping model for manufacturing scale bioreactors, which is independent of carbon dioxide mass transfer coefficient, but takes into account the gas-residence time and gas CO2 saturation time...

Concepts

Cell Culture Processes Carbon Dioxide Peak Viable Cell Densities CHO Cell Culture Processes Reduce Carbon Dioxide Levels Mass Transfer Coefficient Carbon Dioxide Stripping Large Scale Bioreactors Cell Culture Mammalian Bioprocesses

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Coronavirus Research Articles published between Nov 28, 2022 to Dec 04, 2022

R DiscoveryDec 05, 2022
R DiscoveryArticles Included:  5

The coronavirus disease 2019 (COVID-19) is a contagious disease that is caused by a novel coronavirus. Bentham is offering subject-based scholarly con...

Read More

Climate change Research Articles published between Nov 28, 2022 to Dec 04, 2022

R DiscoveryDec 05, 2022
R DiscoveryArticles Included:  5

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cooki...

Read More

Quality Of Education Research Articles published between Nov 28, 2022 to Dec 04, 2022

R DiscoveryDec 05, 2022
R DiscoveryArticles Included:  4

Introduction: The Internet is an extensively used source of medical education by the public. YouTube is a valuable source of information which can be ...

Read More

Gender Equality Research Articles published between Nov 28, 2022 to Dec 04, 2022

R DiscoveryDec 05, 2022
R DiscoveryArticles Included:  3

Gender equity in the classroom is important for teachers to think about in order to ensure they are creating safe environments that allow their studen...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19

ONE PROBLEM . ONE PURPOSE . ONE PLACE

Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.