Abstract

The requirement for silicon-based anode material is growing and has received attentions. Silicon is a promising anode material for lithium-ion batteries due to the high theoretical capacity. However, the high volumetric variability of silicon has led to severe chalking and rapid capacity degradation. To ameliorate these problems, a carbon-covered silicon material with a 3D conductive network structure was prepared employing glucose and phytic acid as carbon sources. When acted as the anode for Lithium-ion batteries, the prepared composite material delivered 1612 mAh/g in the first cycle and approximately 600 mAh/g at 0.1 A/g after 200 cycles. In addition, even at 5 A/g, a high capacity of 503 mAh/g was reached, and when recovered to 0.1 A/g, the capacity of 878 mAh/g was maintained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call