Abstract

Chiral polyheterocycles are one of the most frequently encountered scaffolds in natural products and in current drugs repertoire. A carbohydrate-based diversity oriented synthetic (DOS) approach has been employed for gaining access to many structurally diverse and stereochemically complex rigid polyheterocyclic molecules with multiple chiral hydroxyl groups to enhance aqueous solubility. Inexpensive chiral pool of D-Glucose has been judiciously exploited to get access of complex chiral polyheterocyclic structures using inexpensive, common achiral reagents and domino-Knoevenagel hetero-Diels-Alder (DKHDA) reaction as one of the key synthetic tools. Stereochemistry of newly generated stereocenters of polycyclic structures are unambiguously determined through NMR and X-ray crystallographic study. A chemoinformatic comparison (PCA and PMI) with 40 branded blockbuster drugs showed that newly generated polyheterocycles have good three-dimensional scaffold diversity and most of these pass the Lipinski filter of drug-likeness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call