Abstract

Capacity augmentation bound is a widely used quantitative metric in theoretical studies of schedulability analysis for directed acyclic graph (DAG) parallel real-time tasks, which not only quantifies the suboptimality of the scheduling algorithms, but also serves as a simple linear-time schedulability test. Earlier studies on capacity augmentation bounds of the sporadic DAG task model were either restricted to a single DAG task or a set of tasks with implicit deadlines. In this paper, we consider parallel tasks with constrained deadlines under global earliest deadline first policy. We first show that it is impossible to obtain a constant bound for our problem setting, and derive both lower and upper bounds of the capacity augmentation bound as a function with respect to the maximum ratio of task period to deadline. Our upper bound is at most 1.47 times larger than the optimal one. We conduct experiments to compare the acceptance ratio of our capacity augmentation bound with the existing schedulability test also having linear-time complexity. The results show that our capacity augmentation bound significantly outperforms the existing linear-time schedulability test under different parameter settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.