Abstract

Two-electrode solar rechargeable devices trigger intense attention due to their potential applications in solar energy conversion and storage. However, interface energy barriers lead to severe loss of output voltage and negligible dark discharge current. Therefore, external biases are required for dark discharge in these devices, limiting their practical applications. Herein, we report a new two-electrode device of Si/WO3 /H2 SO4(aq) /C that can work without bias. The device has the highest dark output power among all of the two-electrode solar rechargeable devices. The device based on a Si/WO3 junction indicates photoinduced adjustable interface barrier height during charge transfer, which can overcome the energy barrier and realize dark discharge without bias. Owing to the interface characteristics, the Si/WO3 is designated as a capacitor-type Faradaic junction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.