Abstract

The theory, design, and measured performance of an integrated circuit which enables closed-loop control of electrostatic micromotors is presented. The micromotor control integrated circuit (MCIC) consists of low-noise sense electronics designed to detect critical rotor angles to a resolution of 0.5/spl deg/ (0.05 fF) at a 1-MHz sampling rate, and control logic which cycles the micromotor drive state during continuous rotation to maintain maximum torque, independent of loading. Noise due to MOSFET switches and amplifiers in the analog section is modeled and shown to be 32 /spl mu/V referred to the system input, i.e., about half the desired switching resolution. The MCIC was fabricated using a 2-/spl mu/m, n-well CMOS process and functions as expected. The noise probability density function was measured using MCIC's digital output for different values of input-to-ground capacitance in order to verify the noise model. Good agreement with theory was observed, although the comparator exhibited some offset and hysteresis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.