Abstract

This paper presents a capacitive rotary encoder for both angular position and angular speed measurements. The encoder is mainly composed of three parts: the transmitting segments; a pair of reflecting electrodes; and a pair of receiving electrodes. The transmitting segments together with four mutual quadrature carrier voltages provide a modulated electric field. The reflecting electrodes, which are patterned sinusoidally can encode the angular position to a phase/frequency modulated signal based on quadrature modulation. The modulated signal is then digitally decoded to the angular position in a field programmable gate array processor based on the quadrature demodulation and the coordinate rotational digital computer algorithm. Through a universal serial bus, the digital angular position is transmitted to a computer for further analysis in National Instruments' LabVIEW software. A prototype of the capacitive encoder shows that its precision is better than 0.006° and the resolution is 0.002°. The dynamic nonlinearity is evaluated at ±0.4° when the rotor is rotating at 1000 r/min.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.