Abstract

Typical vibrational harvesters using a high-permeability beam in a cantilever configuration exploit the field generated by a couple of counter-polarized permanent magnets facing the vibrating strip at the free end. Such a canonical position of the magnets does not permit one, however, to highlight the importance of the bias field pattern. A proof of concept archetype is realized in this paper, by which the influence of the magnetization profile along the length of the vibrating ferromagnetic beam is put in evidence. It demonstrates, in particular, that significant variations, even by a factor of three, of the output power can be obtained by a modification of the magnets arrangement. We discussed in this paper the behavior of a cantilever-based generator, where an Fe–Co high-permeability beam is made to vibrate inside an inhomogeneous magnetic field generated by permanent magnets, whose arrangement can modified in order to vary the magnetization profile along the vibrating laminae. The effects of such a profile are measured and analyzed by means of a simple 2-D numerical model, showing that the generated power can be enhanced by conveniently acting on the magnets configuration. The measurements show that, with a host acceleration of $5g$ rms ( $g = 9.81$ m/ $\text{s}^{2}$ ), a 6.72 mW time average output power is obtained for operating frequencies around 60 Hz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.