Abstract

A semi-analytical approach to obtain the proper orthogonal modes is described for the non-linear oscillation of a cantilevered pipe conveying fluid. Theoretically, while the spatial coherent structures are the eigenfunctions of the time-averaged spatial autocorrelation functions, it emerges that once the Galerkin projection of the proper orthogonal modes is carried out using the uniform cantilever-beam modes, the spatial dependency of the integral eigenvalue problem can be eliminated by analytical manipulation which avoids any spatial discretization error. As the solution of the integral equation is obtained semi-analytically by linearly projecting the proper orthogonal modes on the cantilever-beam modes, any linear or non-linear operation can be carried out analytically on the proper orthogonal modes. Furthermore, the reduced-order eigenvalue problem minimizes the numerical pollution which leads to spurious eigenvectors, as may arise in the case of a large-scale eigenvalue problem (without the Galerkin projection of the eigenvectors on the cantilever-beam modes). This methodology can conveniently be used to study the convergence of the numerically calculated proper orthogonal modes obtained from the full-scale eigenvalue problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.