Abstract

Given an edge colouring of a graph with a set of m colours, we say that the graph is exactly m-coloured if each of the colours is used. We consider edge colourings of the complete graph on $\mathbb{N}$ with infinitely many colours and show that either one can find an exactly m-coloured complete subgraph for every natural number m or there exists an infinite subset X ⊂ $\mathbb{N}$ coloured in one of two canonical ways: either the colouring is injective on X or there exists a distinguished vertex v in X such that X\{v} is 1-coloured and each edge between v and X\{v} has a distinct colour (all different to the colour used on X\{v}). This answers a question posed by Stacey and Weidl in 1999. The techniques that we develop also enable us to resolve some further questions about finding exactly m-coloured complete subgraphs in colourings with finitely many colours.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.