Abstract

Here, Zr-doped Sb2Te alloy is proposed for phase change memory (PCM). Zr-doping enhances the crystallization temperature and thermal stability of Sb2Te alloy effectively. Crystalline Zr2(Sb2Te)98 film is manifested as a single phase without phase separation and the growth of crystal grain is dramatically suppressed. The density change of Zr2(Sb2Te)98 material between amorphous and crystalline is ∼2.65 ± 0.03%, which is much smaller than that of Ge2Sb2Te5 (6.5%). Phase change memory cells based on Zr2(Sb2Te)98 material can be reversibly switched by applying 40–400 ns width voltage pulses, and the reset current is relatively small when comparing with the prototypical Ge2Sb2Sb5 material. The resistance ON-OFF ratio of about 1.3 orders of magnitude is enough for figuring “0” and “1” out. Besides, endurance up to 4.1 × 104 cycles makes Zr-doped Sb2Te alloy a potential candidate for PCM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.