Abstract

BackgroundRheumatoid arthritis (RA) is a chronic autoimmune disorder affecting ∼1% of the population. The disease results from the interplay between an individual's genetic background and unknown environmental triggers. Although human leukocyte antigens (HLAs) account for ∼30% of the heritable risk, the identities of non-HLA genes explaining the remainder of the genetic component are largely unknown. Based on functional data in mice, we hypothesized that the immune-related genes complement component 5 (C5) and/or TNF receptor-associated factor 1 (TRAF1), located on Chromosome 9q33–34, would represent relevant candidate genes for RA. We therefore aimed to investigate whether this locus would play a role in RA.Methods and FindingsWe performed a multitiered case-control study using 40 single-nucleotide polymorphisms (SNPs) from the TRAF1 and C5 (TRAF1/C5) region in a set of 290 RA patients and 254 unaffected participants (controls) of Dutch origin. Stepwise replication of significant SNPs was performed in three independent sample sets from the Netherlands (n cases/controls = 454/270), Sweden (n cases/controls = 1,500/1,000) and US (n cases/controls = 475/475). We observed a significant association (p < 0.05) of SNPs located in a haplotype block that encompasses a 65 kb region including the 3′ end of C5 as well as TRAF1. A sliding window analysis revealed an association peak at an intergenic region located ∼10 kb from both C5 and TRAF1. This peak, defined by SNP14/rs10818488, was confirmed in a total of 2,719 RA patients and 1,999 controls (odds ratiocommon = 1.28, 95% confidence interval 1.17–1.39, p combined = 1.40 × 10−8) with a population-attributable risk of 6.1%. The A (minor susceptibility) allele of this SNP also significantly correlates with increased disease progression as determined by radiographic damage over time in RA patients (p = 0.008).ConclusionsUsing a candidate-gene approach we have identified a novel genetic risk factor for RA. Our findings indicate that a polymorphism in the TRAF1/C5 region increases the susceptibility to and severity of RA, possibly by influencing the structure, function, and/or expression levels of TRAF1 and/or C5.

Highlights

  • Rheumatoid arthritis (RA) is characterized by chronic inflammation and destruction of the synovial joints leading to progressive joint damage and disability

  • Our findings indicate that a polymorphism in the TNF receptor-associated factor 1 (TRAF1)/component 5 (C5) region increases the susceptibility to and severity of RA, possibly by influencing the structure, function, and/or expression levels of TRAF1 and/or C5

  • A prominent role for the complement system has been identified as mice deficient in complement factors are resistant to arthritis, and as it has been shown that targeting complement component 5 (C5) by antibodies prevents the onset of arthritis and reduces the clinical severity in mouse models for arthritis [7,8]

Read more

Summary

Introduction

Rheumatoid arthritis (RA) is characterized by chronic inflammation and destruction of the synovial joints leading to progressive joint damage and disability. The disease has a complex etiology, including a wide spectrum of clinical manifestations, variability in disease severity and/or progression, and differential response to a range of therapies This heterogeneous phenotype suggests the involvement of both environmental and genetic factors [1], where the genetic component of RA has been estimated to be between 50%– 60% [2,3]. In several experimental animal models for RA, innate immune responses mediated by a diversity of players have been implicated in arthritis In this respect, a prominent role for the complement system has been identified as mice deficient in complement factors are resistant to arthritis, and as it has been shown that targeting complement component 5 (C5) by antibodies prevents the onset of arthritis and reduces the clinical severity in mouse models for arthritis [7,8]. Information on other genes involved would be helpful both for understanding the underlying cause of the disease and possibly for the discovery of new treatments

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.