Abstract
We investigated the van der Waals heterostructure Cr2NO2/Cr2CF2 by spin-polarized first-principles calculations. The aim is to create two-dimensional ferromagnetic/antiferromagnetic heterostructures where the exchange bias effect can occur. Cr2NO2 MXene is a half-metal ferromagnetic material, while Cr2CF2 MXene is an antiferromagnetic semiconductor. The lattice mismatch of both MXenes is ∼4%, good enough to construct the heterostructure. Three different stackings were considered in the heterostructure: H3, T4, and Top. Also, three different cell parameters are considered: larger lattice constant a(Cr2CF2), shorter lattice constant a(Cr2NO2), and both relaxed. In all cases, T4 staking is the most favorable interaction configuration. Non-covalent interactions show that van der Waals forces dominate in the heterostructure. Also, the average electrostatic potential along the z-axis explains the stability in the T4 stacking. Antiferromagnetic coupling is the most stable when fixing a(Cr2CF2) as the heterostructure lattice parameter, while for the short lattice constant, a(Cr2NO2), the magnetic coupling becomes Ferromagnetic. Band diagrams evidence that both MXenes preserve their electronic properties after the interaction, so the antiferromagnetic alignment is intrinsic in the heterostructure for the larger lattice constant. Our theoretical findings open the door to consider the versatile MXenes as promising candidates for the new generation of information storage nanodevices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.