Abstract
Background To address the challenging problem of selecting distinguished genes from cancer gene expression datasets, this paper presents a gene subset selection algorithm based on the Kolmogorov-Smirnov (K-S) test and correlation-based feature selection (CFS) principles. The algorithm selects distinguished genes first using the K-S test, and then, it uses CFS to select genes from those selected by the K-S test. Results We adopted support vector machines (SVM) as the classification tool and used the criteria of accuracy to evaluate the performance of the classifiers on the selected gene subsets. This approach compared the proposed gene subset selection algorithm with the K-S test, CFS, minimum-redundancy maximum-relevancy (mRMR), and ReliefF algorithms. The average experimental results of the aforementioned gene selection algorithms for 5 gene expression datasets demonstrate that, based on accuracy, the performance of the new K-S and CFS-based algorithm is better than those of the K-S test, CFS, mRMR, and ReliefF algorithms. Conclusions The experimental results show that the K-S test-CFS gene selection algorithm is a very effective and promising approach compared to the K-S test, CFS, mRMR, and ReliefF algorithms.
Highlights
Big data analysis technology can mine gene information related to diseases and drugs from massive gene data and provide new ideas for drug development as well as disease diagnosis and treatment
The integration of the K-S test and correlation-based feature selection (CFS) leads to an effective gene selection scheme
In the preselected gene subset, support vector machines (SVM) was used as the classifier to calculate the accuracy of the 10-fold cross-validation
Summary
Big data analysis technology can mine gene information related to diseases and drugs from massive gene data and provide new ideas for drug development as well as disease diagnosis and treatment. We adopted support vector machines (SVM) as the classification tool and used the criteria of accuracy to evaluate the performance of the classifiers on the selected gene subsets. This approach compared the proposed gene subset selection algorithm with the K-S test, CFS, minimum-redundancy maximum-relevancy (mRMR), and ReliefF algorithms. The average experimental results of the aforementioned gene selection algorithms for 5 gene expression datasets demonstrate that, based on accuracy, the performance of the new K-S and CFS-based algorithm is better than those of the K-S test, CFS, mRMR, and ReliefF algorithms. The experimental results show that the K-S test-CFS gene selection algorithm is a very effective and promising approach compared to the K-S test, CFS, mRMR, and ReliefF algorithms
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.