Abstract
Mobility models are invaluable for determining the performance of routing protocols in opportunistic networks. The movement of nodes has a significant influence on the topological structure and data transmission in networks. In this paper, we propose a new mobility model called the campus-based community mobility model (CBCNM) that closely reflects the daily life pattern of students on a real campus. Consequent on a discovery that the pause time of nodes in their community follows a power law distribution, instead of a classical exponential distribution, we abstract the semi-Markov model from the movement of the campus nodes and analyze its rationality. Then, using the semi-Markov algorithm to switch the movement of the nodes between communities, we infer the steady-state probability of node distribution at random time points. We verified the proposed CBCNM via numerical simulations and compared all the parameters with real data in several aspects, including the nodes’ contact and inter-contact times. The results obtained indicate that the CBCNM is highly adaptive to an actual campus scenario. Further, the model is shown to have better data transmission network performance than conventional models under various routing strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: KSII Transactions on Internet and Information Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.