Abstract

When Escherichia coli is grown in a medium lacking glucose or another preferred carbohydrate, the concentration of cAMP-cAMP receptor protein (cAMP-CRP) increases, and this latter complex regulates the expression of more than 180 genes. To respond rapidly to changes in carbohydrate availability, E. coli must maintain a suitable intracellular concentration of cAMP by either exporting or degrading excess cAMP. Currently, cAMP export via the TolC protein is thought to be more efficient at reducing these levels than is CpdA-mediated degradation of cAMP. Here, we compared the contributions of TolC and CpdA by measuring the expression of cAMP-regulated genes that encode tryptophanase (TnaA) and β-galactosidase. In the presence of exogenous cAMP, a tolC mutant produced intermediate levels of these enzymes, suggesting that cAMP levels were held in check by CpdA. Conversely, a cpdA mutant produced much higher amounts of these enzymes, indicating that CpdA was more efficient than TolC at reducing cAMP levels. Surprisingly, expression of the tnaA gene halted rapidly when glucose was added to cells lacking both TolC and CpdA, even though under these conditions cAMP could not be removed by either pathway and tnaA expression should have remained high. This result suggests the existence of an additional mechanism that eliminates intracellular cAMP or terminates expression of some cAMP-CRP-regulated genes. In addition, adding glucose and other carbohydrates rapidly inhibited the function of pre-formed TnaA, indicating that TnaA is regulated by a previously unknown carbohydrate-dependent post-translational mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call