Abstract

The precipitation phenomena and the related hardening in an Al – Cu – Mg – Si alloy were studied by calorimetry, X-ray diffraction analysis and microhardness measurements. The main calorimetric peaks were identified to be due to β′′, θ′ and Q′ phases precipitation. The hardening during aging at room temperature and 160°C, was respectively, explained by atomic clusters and GP zones formation and by GP zones and β′′/θ′ phases coprecipitation. Although the mechanical properties variation during aging at 200°C is simple, the corresponding microstructural evolution is complex: on the basis of the DSC results, the increasing of microhardness values, is mainly due to the coprecipitation of GP zones and β′′/θ′ phases, however, the maximum hardening is explained by the coexistence of β′′/θ′ and θ′′ phases. Another important conclusion is that during aging at 160°C and 200°C, the θ′ phase is essentially developed from GP zones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.