Abstract

Direct calorimetric determinations of the rate of heat production along with simultaneous determinations of the rate of photon emission and the number of viable cells have provided insight into the growth of Beneckea harveyi and Photobacterium leiognathi. These experiments were performed with a Tronac isothermal microcalorimeter modified with a fiber optic light guide to allow in situ detection of light. Escherichia coli and a dark variant of P. leiognathi were also examined to provide points of reference. It is demonstrated that B. harveyi seems to pause in the rate of metabolic heat production at the same point in time that the enzyme luciferase begins to be synthesized. This effect is not removed if B. harveyi is grown in conditioned medium. The thermograms for all species are correlated with cell generation time. The heat production per cell indicates that uncrowded cultures produce more heat than older, more crowded cultures, supporting the original observation of Bayne-Jones and Rhees (1929). These observations reopen for examination the suggestion that living systems tend toward a state of minimum metabolism per unit mass.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call