Abstract

CaM (calmodulin) has been implicated in the regulation of IP3R [IP3 (inositol 1,4,5-trisphosphate) receptors] and a recent report suggested that CaM tightly tethered to IP3R was essential for IP3R activation [Nadif Kasri, Torok, Galione, Garnham, Callewaert, Missiaen, Parys and De Smedt (2006) J. Biol. Chem. 281, 8332-8338]. In the present study, we confirm that a CaM-binding peptide derived from MLCK (myosin light chain kinase) inhibits IP3-evoked Ca2+ release via all three IP3R subtypes. However,inhibition by MLCK peptide is not mimicked by other CaM antagonists that effectively block regulation of IP3R by CaM. Inhibition by MLCK peptide is rapid, fully reversible and occurs under conditions where there is no CaM associated with IP3R. MLCK peptide stimulates IP3 binding to IP3R1 and to its bacterially expressed N-terminal, but not after removal of the suppressor domain (residues 1-224).We suggest that MLCK peptide mimics a sequence within the suppressor domain that is similar to a1-8-14 CaM-binding motif. The peptide may thereby unzip an interdomain interaction that is essential for IP3R activation. We conclude that CaM is not essential for IP3R activation, and that MLCK peptide is a selective antagonist of the IP3R that binds directly to the N-terminal to uncouple IP3 binding from channel gating. The results of the present study highlight the importance of the suppressor domain in IP3R activation and suggest that MLCK peptide may provide a route to novel non-competitive antagonists of IP3R.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.