Abstract

A few years ago, one of the former Editors of this journal launched “a call to action” (E. F. Taylor, Am. J. Phys. 71, 423–425 (2003)) for a revision of teaching methods in physics in order to emphasize the importance of the principle of least action. In response, we suggest the use of Hamilton's principle of stationary action to introduce the Schrödinger equation. When considering the geometric interpretation of the Hamilton–Jacobi theory, the real part of the action S defines the phase of the wave function exp iS/ℏ, and requiring the Hamilton–Jacobi wave function to obey wave-front propagation (i.e., Re(S) is a constant of the motion) yields the Schrödinger equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.