Abstract

Polarimetry with permille-level precision is essential for future electron-positron linear colliders. Compton polarimeters can reach negligible statistical uncertainties within seconds of measurement time. The dominating systematic uncertainties originate from the response and alignment of the detector which records the Compton scattered electrons. The robust baseline technology for the Compton polarimeters foreseen at future linear colliders is based on an array of gas Cherenkov detectors read out by photomultipliers. In this paper, we will present a calibration method which promises to monitor nonlinearities in the response of such a detector at the level of a few permille. This method has been implemented in an LED-based calibration system which matches the existing prototype detector. The performance of this calibration system is sufficient to control the corresponding contribution to the total uncertainty on the extracted polarisation to better than 0.1%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.