Abstract

Various methods have been proposed to measure fracture aperture distributions, including X-ray computed tomography (CT) imaging, which has the advantage that it can be combined with dynamic flow experiments. In this paper, we present a calibration-free missing CT attenuation (CFMA) imaging method for measuring fracture apertures that avoids time-consuming calibration. In addition, this model does not assume a homogeneous matrix and thus provides a good estimate of fracture apertures even when rock properties are heterogeneous. The validity of the CFMA model is established by four approaches: comparing apertures calculated with the conventional calibration-based method; evaluating model predictability at different scanner voxel sizes; comparing with calibration coefficients in the literature from a number of experiments with different rocks and X-ray scanners; and comparing aperture measurements for dry and wet scans. We analyze the systematic error and the random error introduced by rock heterogeneities and CT scanning and show that by averaging 5 replicate scans, we reduce the aperture measurement error to ∼22 µm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call