Abstract

If cutoffs are introduced then existing results in the literature show that the Schwinger model is dynamically equivalent to a boson model with quadratic Hamiltonian. However, the process of quantising the Schwinger model destroys local gauge invariance. Gauge invariance is restored by the addition of a counterterm, which may be seen as a finite renormalisation, whereupon the Schwinger model becomes dynamically equivalent to a linear boson gauge theory. This linear model is exactly soluble. We find that different treatments of the supplementary (i.e. Lorentz) condition lead to boson models with rather different properties. We choose one model and construct, from the gauge invariant subalgebra, a class of inequivalent charge sectors. We construct sectors which coincide with those found by Lowenstein and Swieca for the Schwinger model. A reconstruction of the Hilbert space on which the Schwinger model exists is described and fermion operators on this space are defined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call